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Abstract: This paper focuses on range image registration for robot localization and environ-
ment mapping. It extends the well-known Iterative Closest Point (ICP) algorithm in order
to deal with erroneous measurements. The dealing with measurement errors originating from
external lighting, occlusions or limitations in the measurement range is only rudimentary in
literature. In this context we present a non-parametric extension to the ICP algorithm that
is derived directly from measurement modalities of sensors in projective space. We show how
aspects from reverse calibration can be embedded in search-tree-based approaches. Experiments
demonstrate the applicability to range sensors like the Kinect device, Time-of-Flight cameras
and 3D laser range finders. As a result the image registration becomes faster and more robust.
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1. INTRODUCTION

With the objective of interacting with the real world,
autonomous robotic research faces manifold problems at
one go, e.g., fine motor skills, cognitive and planning
abilities and in particular the robust perception of the
environment. The scene has to be interpreted quickly
especially in terms of motion estimation to avoid collisions
and to perform manipulation tasks, needed, for instance,
in rescue or medical robotics.

Range image registration is an important task in robotics
for designing autonomous agents. The development of 3D
sensors that provide high frame rates at low weight, energy
consumption and costs pushes advances in robotic real-
time perception. The algorithm design has to match sensor
modalities, i.e., they have to be fast to meet real-time
constraints and they need to deal with erroneous measure-
ments dependent on the environment. There might occur
measurement errors due to low or specular reflectivity, inci-
dence of sunlight or when the distance between sensor and
object is larger than the working range of the sensor. These
issues result either in a wrong or a missing measurement
point.

This paper compares derivatives of range image regis-
tration approaches based on the Iterative Closest Points
(ICP) algorithm with respect to above-mentioned modali-
ties. It further provides a formal classification of filters and
an extension dedicated to narrow-field-of-view range sen-
sors. The paper is organized as follows: Section 2 discusses

Fig. 1. Robot equipped with a Kinect device for 3D
mapping purposes in indoor environments.

extensions to the ICP algorithm, all of which aiming at in-
creasing robustness in range image registration. Section 3
classifies derivatives of ICP approaches and presents an
extension and its intuitive derivation with respect to sensor
modalities. The experiments are presented in section 4.
Here, scene configurations are chosen in which range im-
age registration is typically difficult. It is shown that the
proposed extensions increase the robustness and conver-
gence rate significantly for the selected scenes. Section 5
concludes the paper with an outlook on future work.



2. RELATED WORK

The Iterative Closest Point (ICP) algorithm, which was
developed independently by Besl and McKay (1992), Chen
and Medioni (1991) and Zhang (1992), is the most pop-
ular approach for range image registration. It aims at
obtaining an accurate solution for the alignment of two
point clouds – a reference, called model M = {mi|i =
1 . . . Nm} and a scene denoted by D = {di|i = 1 . . . Nd}
– by means of minimizing iteratively distances between
point correspondences. The result can be expressed as a
transformation matrix T consisting of a rotation matrix
R and a translation vector t. In each iteration step the
transformation minimizing an error function is computed.
A point-to-plane error metric has been shown to be prior
over a point-to-point error metric. Rusinkiewicz and Levoy
(2001) provide a detailed analysis of efficient variants of
the ICP approach, discussing the closed-form solutions,
point-to-point vs. point-to-plane metrics, nearest neighbor
assignment strategies and different rejection rules.

A generalized formulation of the ICP approach has been
proposed by Segal et al. (2009). They showed that point-
to-point and point-to-plane error metrics as well as a newly
defined plane-to-plane error metric can be covered by a
general formulation:
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ces associated with the model and the scene respectively.
In dependence of these covariance matrices, one obtain one
of the mentioned error metrics. The solution is found by
iterating with a non-linear optimization step employing
MLE.

The assignment of nearest neighbors is the most time con-
suming task in the iterative registration scheme. Measures
of mainly two categories for reducing time consumption are
widely used. The first one is based on search trees, which
reduce complexity of search from O(n2) to O(n log n).
The second category comprise measures to find quickly
close neighbors, but not necessarily the nearest ones. The
price to be paid is the need for more iterations. But, if
the speedup of one iteration is large enough, the total
runtime can be significantly shorter. One early approach
to be mentioned is called reverse calibration and makes
use of projective geometry to find nearest neighbors along
the line of sight of two intersecting point clouds (Blais
et al., 1993; Neugebauer, 1997). Especially for GPU-based
approaches, this search strategy is easy to implement and
may use massive parallelism (Izadi et al., 2011).

Point correspondence rejection has a strong impact on the
registration result. A straight forward implementation of
the ICP approach assumes that the scene is completely
covered by the model (Besl and McKay, 1992). In the
case that the scene includes points which are not part
of the model (from a non-overlapping or previously oc-
cluded area), wrong correspondences are assigned for these
points which might distort the registration result (Fusiello
et al., 2002). The simplest solution is the employment of
a distance threshold. Corresponding tuples are rejected
if their Euclidean distance exceeds this value. Several

strategies are possible to determine suitable thresholds,
e.g., a gradual decreasing threshold with respect to the
iteration step. In general, these thresholds increase the
registration performance on partially overlapping point
clouds significantly, but are difficult to parameterize for
not getting stuck in a local minimum.

Many extensions to the ICP approach have been pub-
lished addressing the determination of valid point cor-
respondences from overlapping parts. Chetverikov et al.
(2002) proposed the Trimmed ICP (TrICP) approach. It
employs a parameter representing the degree of overlap,
i.e., the number of corresponding points N . Only the first
N correspondence pairs ordered ascending by point-to-
point distance are considered for estimating the optimal
transformation. The disadvantage is that the degree of
overlap needs to be estimated in advance, e.g., by the
use of a second sensor. Prusak et al. (2007) employed, for
instance, a spherical camera in order to obtain a coarse
estimate for the degree of overlap.

Several approaches have been proposed to overcome the
registration problem with unknown degree of overlap.
Fusiello et al. employed the X84 rejection rule, which uses
robust estimates for location and scale of a corrupted
Gaussian distribution. It aims at estimating a suitable
rejection threshold concerning the distance distribution
between corresponding points. Niemann et al. (2003) pro-
posed a rejection rule that considers multiple point as-
signments (Picky ICP algorithm). If multiple points from
the scene are assigned to the same corresponding model
point, only the scene point with the nearest distance is
accepted. The other pairs are rejected. Pajdla and Van
Gool (1995) proposed the inclusion of a reciprocal rejection
rule (Iterative Closest Reciprocal Point algorithm - ICRP).
For a corresponding point pair, which has been determined
by searching the nearest neighbor of a scene point in the
model, the search is reversed subsequently, i.e., for the
corresponding model point the nearest neighbor in the
scene is determined. This does not need to be the same
scene point. The point correspondence is rejected if both
scene points have a distance larger than a certain thresh-
old. A disadvantage of the ICRP approach is the higher
computational effort, since the nearest neighbor search,
which is the most time consuming task, is performed twice
as much as for all other approaches.

3. ICP EXECUTION CHAIN

Rejection rules included in the ICP approach can be clas-
sified in two categories: Pre-assignment filters and post-
assignment filters. Pre-assignment filtering is performed
before the time consuming nearest neighbor search, i.e.,
assignments of points are not known at this stage of
computation. A related rejection rule can only employ
attributes of the selected scene point.

In contrast, post-assignment filters employ the distance
between assigned tuples. Both filter types can be included
in the execution chain as summarized in Algorithm 1.

3.1 Projective Filtering

The following subsection explains the idea of employing
the perspective projection of 3D measurements as a pre-



Algorithm 1. ICP iteration scheme

(1) Apply pre-assignment filter to select a subset D′ from
scene D.

(2) For each point in D′ search nearest neighbor in M .
(3) Apply post-assignment filter to select a subset from

the tuples {(mk,d
′
k)|k ∈ 1 . . . N ′} found in step 2.

(4) Calculate T for the tuples according to equation (1).
(5) Apply transformation to scene D.
(6) If termination criterion does not apply, go back to

step 1.

assignment filter. The definition of this filter is directly
based on projective geometry that underlies the measure-
ment principle of a Kinect device or a Time-of-Flight
(ToF) camera. The transformation which the sensor has
undergone between two poses is to be determined from
the sensor’s data. Assuming, we would know the correct
transformation, we could say which measurement point
of the second data take could have been in line of sight
from the first pose. In fact, this information is not known.
But, the basic principle of the ICP algorithm is that the
correct transformation is iteratively approached. Thus,
the filter employs the estimated transformation during
the iteration scheme resulting in a valid rejection rule.
The main difference to reverse calibration is that the Eu-
clidean distance is still used as a metric for finding nearest
neighbors. Consequently, advantages of using perspective
geometry is introduced for search-tree-based algorithms. It
can be performed as follows. Homogeneous coordinates ξi
of scene points are projected with the general perspective
projection matrix P of the model to the image plane with

Pξi → (ui, vi)
T
, (2)

where u and v are resulting image coordinates from the
perspective view of the model’s pose. With a validity
check, several aspects can be considered:

First, projections from the outer side of the visible frustum
can be determined. The same effect can be achieved with
a frustum check as previously published in (May et al.,
2009). Being close to the correct solution, points from
non-overlapping areas are removed without the need of
parametrization, e.g., with a threshold.

Second, a projection to image coordinates in which an
erroneous measurement was recorded before, can also be
determined. This test relates, for instance, to specular
reflections or the incidence of direct sunlight. The appli-
cation of the projective filter is performed as follows:

D′ = {di|z(ui, vi) > 0 ∧ z(ui, vi) < zmax}, (3)

where the coordinates (ui, vi) are obtained by projecting
the query points with matrix P, the function z relates
the depth measurements and the value zmax denotes the
maximum depth value of the model, i.e., the definition of
the far frustum plane.

Finally, occlusions can be detected since at least two
measurements would be projected to the same image
coordinates. In computer graphics this rejection is called
z-Buffer test. Only the tuple including the nearest scene
point is considered, others are rejected.

D′′ = {d′i|min z(ui, vi)} (4)

Summarized, each measurement is rejected, if the corre-
sponding image projection could not have been in line of
sight from the model’s perspective.

3.2 Estimation of Surface Normals

For estimating surface normals, an area weighted method
has been chosen, since it states a trade-off between fast
computation and quality (Klasing et al., 2009):

nk =
1

Nq

Nq∑
j=1

wj
([qk,j −mk]× [qk,j+1 −mk])

|[qk,j −mk]× [qk,j+1 −mk]|
, (5)

where Nq are the number of neighbors qk,j around the
model point. The weights wj are computed as the area of
the triangle spanned by these neighbors:

wj =
1

2
|[qk,j −mk]× [qk,j+1 −mk]|. (6)

Substituting equation (6) into equation (5) reduces the
computation to the average of the cross products of
adjacent triangles.

A more accurate solution can be implemented by fitting
surface elements to the set of nearest neighbors of each
query point. But due to the higher computational effort,
we consider above mentioned approach to be prior w.r.t.
the computational demand to a CPU-based implementa-
tion.

4. EXPERIMENTS AND RESULTS

The convergence of three different configurations were
recorded within the iteration loop of each registration pro-
cess. Initialization was set to identity. The projective filter
has been embedded as a pre-assignment filter for point-
to-plane and plane-to-plane error metrics. The benchmark
has been performed against a gradual decreasing distance
filter and reverse calibration.

4.1 Evaluation Measures

The convergence evaluation is performed on the basis of
an axis-angle representation. The 4 × 4 matrices Tc to
which a correct registration run needs to converge, have
been determined manually by providing close estimates.
Further, let Ticp be the estimated pose change determined
for different registration runs. The angular error e∆θ and
the translational error e∆t is then determined from the
remaining pose difference computed by Te = TcT

−1
icp.

4.2 Scene Configuration

In order to demonstrate that the proposed filter increases
robustness the following three scene configurations were
chosen:

(1) Compared to 3D laser range finders, the field of view
is small by using real-time capable range sensors
like ToF cameras or the Kinect device. When the
rotational movement is fast, two data takes provide
only a small partial overlap. Fig. 2 shows a scene in
which a rotational movement of 26 ◦ between two data
takes has been performed. Since the Kinect device has
a horizontal field of view of 57 ◦ the overlap is only
≈ 54%.



Fig. 2. Scene 1 for evaluation: Left) Scene in line of sight during rotational movement. Center/Right) Two range images
with low overlap were taken. Depicted is the perspective view of the Kinect device. It can be noticed that specular
reflections avoid distance measurements when the emitted light hits the ground under an obtuse angle. Black areas
were either not in line of sight or incapable of measurement due to reflections or external lighting.

Fig. 3. Scene 2 for evaluation: Left) Scene in line of sight during translational movement. Center/Right) Perspective
view of the Kinect device. It can clearly be seen that measurement points from objects out of the working range
cannot be determined (here at the center of image). They will appear when the robot comes closer. Especially in
this situation, the definition of a far frustum plane is meaningful. Additionally, occluded areas will be uncovered
while approaching the open door.

Fig. 4. Scene 3 for evaluation: Left) Scene in line of sight for the data take with incidence of direct sunlight. Center/Right)
Sunlight and low reflectivity avert the determination of distances with a Kinect device (cf. black area in the central
part).



(2) Some occluded areas are disclosed from the sensor’s
perspective view when performing a translational
movement. Fig. 3 shows a scene in which a robot was
driven towards an open door. Here, a filter needs to
determine areas that were not in line of sight from the
pose of the first data take. Additionally, one can see
that the limitation of the working range and specular
reflections influence distance measurements.

(3) In some situations indoor robotics has to deal with
external lighting. Fig. 4 shows a scene with incidence
of sunlight through a window. Distance measurements
cannot be determined from areas hit by direct sun-
light.

4.3 Evaluation Results

The ICP approach used for the experiments employs
the publicly available GNU Scientific library (GSL) and
the Fast Library for Approximate Nearest Neighbors
(FLANN). The runtime in each iteration step is not con-
stant since the pre-filtering reduces the amount of nearest
neighbor searches. Thus, for data sets with a small over-
lap the runtime decreases with each iteration step while
approaching the minimum. Other optimization techniques
like parallelization were not used. There is still potential
in reducing runtime.

The entire scene covers 640 × 480 samples to be deducted
by erroneous measurements, resulting in 307200 samples
at most. The comparison has been performed on a subsam-
pled point set selecting only every 25th measurement point
of the scene. For each registration task the runtime could
be reduced. Table 1 compares the runtime exemplarily for
the point-to-plane error metric. Here, the same amount
of iterations were configured for both filters in order to
compare the computational demand of the iteration loops.
Additionally, a reduction in runtime can be obtained by
the faster convergence, since less iterations would be nec-
essary.

Table 1. Runtime comparison for point-to-
plane metric with subsampled scene.

Rev. Calib. (ms) Distance (ms) Projective (ms)

scene1 70 455 235

scene2 88 334 236

scene3 68 370 152

The runtime exclude the computation of surface normals.
For the Kinect device, one has to be aware of the quality
of distance data, when dealing with objects that are not
directly in the close-up range. The number of nearest
neighbors in equation (5) for estimating surface normals
has to be adapted w.r.t. the image quality, which influences
the overall runtime and convergence. The employment of
both error metrics are sensitive to the quality of normals
computation.

For all scenes either the rotational or the translational
error is provided, since both dimensions reflected the same
convergence results in our experiments. The registration
results of the first scene are depicted on the left side of
Figures 5 and 6. The scene of the underlying data set is
mapped to the model with a significant rotation and a
slight translation. Thus, only the rotational error is plot-
ted. The reverse calibration approach did not converge for

both error metrics. We assume that large discontinuities in
depth between foreground and background are the reason
for the poor performance.

Also, projective filtering introduces an error. The registra-
tion did not converge properly, since the starting pose of
the scene is too far away from to the true value. The exper-
iment had been modified in terms of filter activation. The
filter has been applied only after a third of the iterations.
The activation can clearly been seen in Figures 5 and 6,
indicated by a faster drop off in the error metrics.

The registration results for the second scene are illustrated
in the second column of both figures. The performed
motion is dominantly translational, wherefore only the
translational error is plotted. Here, also the reverse cal-
ibration showed poor performance. The reason for this
behavior can also be explained by discontinuities in depth.
Following a line of sight for the nearest neighbor search
will assign incorrect neighbors at boundary areas, when
previously occluded areas get uncovered. The Euclidean
distance states a more stable metric in this situation. The
application of projective filtering improved the registration
results slightly.

For the scene with incidence of direct sunlight the results
are differently. Reverse calibration performed best in terms
of the necessary number of iterations as well as for the eval-
uated error metric. Either the point-to-plane and plane-to-
plane metric were converging slowly towards the correct
minimum for point assignments in Euclidean space. Nev-
ertheless, the projective filter improves the convergence
significantly.

4.4 Lessons Learned

The performance of the ICP approach depends on several
factors. Since many extensions to the ICP approach have
been proposed, a benchmark can only cover a smaller
part of the combinatorial possibilities w.r.t. error met-
rics, assignment or filtering techniques or subsampling
strategies. Most of the combinatorial complexity is added
with the chosen environment and the performed sensor
motion. With a benchmark covering only a smaller part of
these aspects, one can produce nearly any desired results.
Therefore, we disclaimed to design the evaluation w.r.t. to
the proposed method.

5. CONCLUSIONS AND FUTURE WORKS

This paper presented an extension for range image reg-
istration based on the well-known Iterative Closest Point
algorithm in order to deal with erroneous measurements.
A classification of extensions to the ICP algorithm has
been described. Depending on the integration into the
execution chain, rejection rules can be classified as pre-
assignment or post-assignment filters. In this context we
presented an extension that is derived directly from mea-
surement modalities of sensors in projective space. The
intuitive formulation of the problem resulted in a pre-
assignment filter that increased the convergence rate for
k-d tree based assignment techniques in several situations.
We showed that the principle idea of reverse calibration
can be embedded in these algorithms.

Future work will focus on the impact of sensor motion
to registration results. The experimental results that we
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Fig. 5. Convergence for point-to-plane metric for scenes 1 to 3 from left to right.

0

10

20

30

40

50

60

0 5 10 15 20 25 30

R
o
ta
ti
o
n
a
l
er
r.

e ∆
θ
(◦
)

Iteration

Distance

Projective

Rev. Calib.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

T
ra
n
sl
a
ti
o
n
a
l
er
r.

e ∆
t
(m

)

Iteration

Distance

Projective

Rev. Calib.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

R
o
ta
ti
o
n
a
l
er
r.

e ∆
θ
(◦
)

Iteration

Distance

Projective

Rev. Calib.

Fig. 6. Convergence for plane-to-plane metric for scenes 1 to 3 from left to right.

presented in this paper motivate for a detailed analysis in
order to rate expected performance of ICP configurations
w.r.t. the performed sensor motion.

REFERENCES

Besl, P. and McKay, N. (1992). A method for Registration
of 3–D Shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2), 239 – 256.

Blais, G., Levine, M.D., and Levine, M.D. (1993). Regis-
tering Multiview Range Data to Create 3D Computer
Objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(8), 820–824.

Chen, Y. and Medioni, G. (1991). Object modeling by
registration of multiple range images. In In Proceedings
of the IEEE Conference on Robotics and Automation
(ICRA), 2724–2729. Sacramento, CA, USA.

Chetverikov, D., Svirko, D., Stepanov, D., and Krsek, P.
(2002). The trimmed iterative closest point algorithm.
In Proceedings of the 16th International conference on
pattern recognition (ICPR), volume 3, 545–548. Quebec.

Fusiello, A., Castellani, U., Ronchetti, L., and Murino,
V. (2002). Model acquisition by registration of mul-
tiple acoustic range views. In A. Heyden, G. Sparr,
M. Nielsen, and P. Johansen (eds.), Proceedings of the
7th European Conference on Computer Vision (ECCV),
number 2351 in Lecture Notes in Computer Science,
805–819. Springer, Copenhagen, Denmark.

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe,
R., Kohli, P., Shotton, J., Hodges, S., Freeman, D.,
Davison, A., and Fitzgibbon, A. (2011). KinectFusion:
real-time 3D reconstruction and interaction using a
moving depth camera. In Proceedings of the 24th
annual ACM symposium on User interface software and
technology, UIST ’11, 559–568. ACM, New York, NY,
USA.

Klasing, K., Althoff, D., Wollherr, D., and Buss, M. (2009).
Comparison of surface normal estimation methods for

range sensing applications. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), 3206–3211. Kobe, Japan.

May, S., Droeschel, D., Holz, D., Fuchs, S., Malis,
E., Nuechter, A., and Hertzberg, J. (2009). Three-
dimensional mapping with time-of-flight cameras. Jour-
nal of Field Robotics (JFR), Special Issue on Three-
dimensional Mapping, 26(11–12), 934–965.

Neugebauer, P.J. (1997). Geometrical cloning of 3D ob-
jects via simultaneous registration of multiple range
images. In Proceedings of the 1997 International Con-
ference on Shape Modeling and Applications (SMA ’97),
130–139. IEEE Computer Society, Washington, DC,
USA.

Niemann, H., Zinßer, T., and Schmidt, J. (2003). A
refined ICP algorithm for robust 3-D correspondence
estimation. In Proceedings of the IEEE International
Conference on Image Processing. Barcelona.

Pajdla, T. and Van Gool, L. (1995). Matching of 3-D
curves using semi-differential invariants. In Proceedings
of the Fifth International Conference on Computer Vi-
sion (ICCV), 390–395. Boston, MA, USA.

Prusak, A., Melnychuk, O., Roth, H., Schiller, I., and
Koch, R. (2007). Pose Estimation and Map Building
with a PMD-Camera for Robot Navigation. In Proceed-
ings of the Dynamic 3D Imaging Workshop in Conjunc-
tion with DAGM (Dyn3D). Heidelberg, Germany.

Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants
of the ICP algorithm. In Proceedings of the Third
International Conference on 3D Digital Imaging and
Modellling (3DIM). Quebec City, Canada.

Segal, A.V., Haehnel, D., and Thrun, S. (2009).
Generalized-ICP. In Robotics: Science and Systems.

Zhang, Z. (1992). Iterative point matching for registration
of free-form curves. Technical Report RR-1658, INRIA
Sophia Antipolis, Valbonne Cedex, France.


